Physics 124: Lecture 1

Course Structure
Crash Course for Arduino
Crash Course in C

Course Structure

MWEF Lecture, at least for first 5 weeks
— 7% of course grade on participation/attendance
Structured Labs first 4 weeks (building blocks)
— demonstrated performance is 36% of grade
— must adhere to due dates to prevent falling behind

Midterm to demonstrate simple coding, 7% of grade
Creative project second half of quarter (50% of grade)
— final demonstration Friday March 19 (with spectators)
Work in teams of 2 (with few exceptions)

Primary Lab periods: T/W 2-6

— at least 2/3 of “help” will be on hand

— will have access to lab space 24/7

2 Profs & 2 TAs:

— Tom Murphy, Julio Barreiro, Clayton Anderson, Paul Lauria

Phys 124: Lecture 1

1/4/16

Project Rubric

* Three principal ingredients

— Measure/Sense/Perceive
* the most physics-related component

— Process/Calculate/Think
* usually via microcontroller

— Act/React/Do

* motors, lights, sound, display
Examples from past (inadequately small sample)
— remote-control type car parallel parks itself
automatic shifting on bike
rotating LED sphere changes color/intensity to music

— see
http://www.physics.ucsd.edu/~tmurphy/phys124/
projects/projects.html for more

Why is this a Physics Course?

What about this is physics? Why do we bother?
True that this is not front/center in physics research
* BUT...

— has been useful in research (mine and former students)

— learn about sensors

— proficiency with a tool that can help control experiments
— learn some coding in C (well-used language in physics)

— more familiar with practical electronics

— learn team dynamics/communication

— deadlines

— gain confidence in ability to do something unique

Goal is fun enough to motivate real investment
— a necessary ingredient to real learning

1/4/16

DIGITAL (PWM~)
o o
% O®UNO)
ARDUINO

eanw »wmo’n:u-te‘
) SR
::f

Arduino Uno Arduino Nano

Packaged Microcontroller (ATMega 328)

— lots of varieties; we’ll primarily use Uno and Nano

— USB interface; breakout to pins for easy connections
— Cross-platform, Java-based IDE, C-based language

— Provides higher-level interface to guts of device

Phys 124: Lecture 1

Arduino Core Capabilities

* Arduino makes it easy to:

— have digital input/output (1/0) (14 channels on Uno)
— analog input (6 channels on Uno; 8 on Nano)

— “analog” (PWM) output (6 of the digital channels)

— communicate data via serial (over USB makes easy)
Libraries available for:

— motor control; LCD display; ethernet; SPI; serial; SD cards,
and lots more

“Shields” for hardware augmentation

— stepper motor drivers

— LCD display

— GPS receiver

— bluetooth, SD card, ethernet, wireless, and lots more

Phys 124: Lecture 1

1/4/16

Why Arduino?

Previous incarnations of this course used the PIC
microcontroller from Microchip Technology

Why switch to something new?
Arduino allows Mac/Linux users to have fun

— many students are smart enough to avoid Windows
Arduino is cheap ($25-535 range is typical)

— so students can afford to play on their own (encouraged!)
Arduino programming usefully transfers to research

— Crather than assembly code

High-level functions mean less time at register/bit level

— more time to learn about sensors, put amazing projects
together, rather than dwell on computer engineering

Yet loss of low-level understanding is unfortunate cost

Mission: Get up to Speed Fast

We’'re going to do a crash course this first week to
get you going super-fast

Involves some hardware proficiency

— hooking up elements in breadboard, e.g.

But mostly it’s about coding and understanding how
to access Arduino functions

Emphasis will be on doing first, understanding later
— not always my natural approach, but four weeks is short

Monday lecture will often focus on upcoming lab
Wed. will elaborate and show in-class examples
Friday may often provide context/background

1/4/16

Every Arduino “Sketch”

Each “sketch” (code) has these common elements
// variable declarations, like
const int LED=13;

void setup()

{

// configuration of pins, etc.

void loop()
{

// what the program does, in a continuous loop

}
Other subroutines can be added, and the internals
can get pretty big/complex

Phys 124: Lecture 1

Rudimentary C Syntax

Things to immediately know
anything after // on a line is ignored as a comment

braces { } encapsulate blocks

semicolons ; must appear after every command

* exceptions are conditionals, loop invocations, subroutine titles,
precompiler things like #include, #define, and a few others

every variable used in the program needs to be declared

* common options are int, float, char, long, unsigned long,
void

* conventionally happens at the top of the program, or within
subroutine if confined to { } block
— Formatting (spaces, indentation) are irrelevant in C
* but it is to your great benefit to adopt a rigid, readable format
* much easier to read/debug if indentation follows consistent rules

Phys 124: Lecture 1

1/4/16

Example Arduino Code

// blink LED. slow blink of LED on pin 13
const int LED = 13; // LED connected to pin 13

// const: will not change in prog.

void setup() // obligatory; void->returns nada

{
pinMode (LED, OUTPUT); // pin 13 as output (Arduino cmd)

void loop() // obligatory; returns nothing

{
digitalWrite(LED, HIGH); // turn LED ON (Arduino cmd)
delay(1000); // wait 1000 ms (Arduino cmd)
digitalWrite(LED, LOW); // turn LED OFF
delay(1000); // wait another second

}

Phys 124: Lecture 1

Comments on Code

* Good practice to start code with descriptive comment
— include name of sketch so easy to relate print-out to source
* Most lines commented: also great practice
* Only one integer variable used, and does not vary
— so can declare as const
+ pinMode(), digitalwWrite(), and delay() are Arduino
commands
* OUTPUT, HIGH, LOW are Arduino-defined constants
— just map to integers: 1, 1, 0, respectively
* Could have hard-coded digitalwrite(13,1)
— but less human-readable than digitalWrite (LED, HIGH)

— also makes harder to change output pins (have to hunt for each
instance of 13 and replace, while maybe not every 13 should be)

Phys 124: Lecture 1

1/4/16

Arduino-Specific Commands

* Command reference:
http://arduino.cc/en/Reference/HomePage
— Also abbr. version in Appendix C of Getting Started book
(2 ed.)
* In first week, we’ll see:
— pinMode(pin, [INPUT | OUTPUT])
— digitalwrite(pin, [LOW | HIGH])

— digitalRead(pin) 2 int

— analogWrite(pin, [0...255])

— analogRead(pin) = int in range [0..1023]

— delay(integer milliseconds)

— millis() = unsigned long (ms elapsed since reset)

Phys 124: Lecture 1

Arduino Serial Commands

* Also we’ll use serial communications in week 1:
— Serial.begin(baud): in setup; 9600 is common choice
— Serial.print(string): string = “example text “
— serial.print(data): prints data value (default encoding)

— serial.print(data,encoding)
* encoding is DEC, HEX, OCT, BIN, BYTE for format

— Serial.println(): just like print, but CR & LF (\r\n)
appended

— Serial.available() =2 int (how many bytes waiting)
— Serial.read() =2 char (one byte of serial buffer)
— serial.flush(): empty out pending serial buffer

Phys 124: Lecture 1

1/4/16

Typesin C
* We are likely to deal with the following types
char c; // single byte
int 1i; // typical integer
unsigned long j; // long positive integer
float x; // floating point (single precision)
double y; // double precision
c = 'A";
i = 356;
j = 230948935;
x = 3.1415927;
y = 3.14159265358979;
* Note that the variable c=‘A" is just an 8-bit value, which

happens to be 65 in decimal, 0x41 in hex, 01000001

— couldsayc = 65;0rc = 0x41; with equivalent results

* Not much call for double precision in Arduino, but good
to know about for other C endeavors

Phys 124: Lecture 1

Changing Types (Casting)

* Don’t try to send float values to pins, and watch out
when dividing integers for unexpected results

* Sometimes, we need to compute something as a

floating point, then change it to an integer
(int) fval;
int(fval); // works in Arduino, anyhow

— ival

— ival
* Beware of integer math:

- 1/4=0;8/9=0;37/19=1

— so sometimes want fval = ((float) ivall)/ival2

— or fval = float(ivall)/ival2 //okay in Arduino

Phys 124: Lecture 1

1/4/16

Conditionals

* The if statement is a workhorse of coding
— if (1 < 2)

— if (1 <= 2)

— if (i >= -1)

— if (i == 4)// note difference between == and =
- if (x == 1.0)

— if (fabs(x) < 10.0)

— if (1 < 8 && i > -5) // && and

- if (x > 10.0 || x < -10.0) // ||
* Don’t use assignment (=) in test clauses

— Remember to double up ==, &8&, ||
* Will execute single following command, or next { } block

— wise to form { } block even if only one line, for readability/
expansion

* Can combine with else statements for more complex
behavior

Phys 124: Lecture 1 17

If..else construction

* Snippet from code to switch LED ON/OFF by listening
to a button

void loop()

{
val = digitalRead(BUTTON) ;

if (val == HIGH){
digitalWrite(LED, HIGH);
} else {

digitalWrite(LED, LOW);
}
}

* BUTTON and LED are simply constant integers
defined at the program start

* Note the use of braces
— exact placement/arrangement unnec., but be consistent

Phys 124: Lecture 1 18

1/4/16

For loops

Most common form of loop in C
— alsowhile, do..while loops
— associated action encapsulated by braces

int k,count;

count = 0;
for (k=0; k < 10; k+t++)

{
count += 1;
count %= 4;
}
k is iterated

— assigned to zero at beginning
— confined to be less than 10
— incremented by one after each loop (coulddo k += 1)

for (;;) makes infinite loop (no conditions)
X += 1meansx = x + 1;x $= 4meansx = x % 4
— countwillgo1,2,3,0,1,2,3,0, 1, 2 then end loop

Phys 124: Lecture 1 19

#define to ease the coding

#define NPOINTS 10
#define HIGHSTATE 1

#define comes in the “preamble” of the code
— note no semi-colons

— just a text replacement process: any appearance of NPOINTS in
the source code is replaced by 10

— Convention to use all CAPs to differentiate from normal variables
or commands

— Now to change the number of points processed by that program,
only have to modify one line

— Arduino.h defines handy things like HIGH = 0x1, LOW = 0x0, INPUT
= 0x0, OUTPUT = 0x1, INPUT_PULLUP = 0x2, PI, HALF_PI, TWO_PI,
DEG_TO_RAD, RAD_TO_DEG, etc. to make programming easier to
read/code

Phys 124: Lecture 1 20

1/4/16

10

Voices from the Past

avoid magnets in projects (2013)

heat sinks are there for a reason (2013)

make circuit diagrams & update changes (2013)
robots are stupid (2013, 2014)

use the oscilloscope (2013)

save often, and different versions (2013, 2014, 2015)
some lectures are boring, but boring # useless (2013)
start early (2014)

comment your code (2014)

take more time to think than to code (2014)

don’t use perf-board unless you rock at soldering (2014)

Voices, Continued

Listen to Prof. Murphy and TAs (2014)

Use Serial Monitor and DVM for debugging (2014, 2015)
Pin conflicts are real! (2014)

Know what pins are used by your shield (2014)
Read the data sheets (2014)

Walk away if something doesn’t work (2014)

Know the purpose of every line of code (2015)

A simple concept might not be so simple (2015)
Pick a project that can be scaled up or down (2015)
Get your own Arduino & practice/explore (2015)
Batteries can be a real pain (2015)

Make a set schedule with partner (2015)

1/4/16

11

Announcements

Can go to lab right after class to start on kits
— otherwise Tue. or Wed. lab at normal 2PM start time

Late labs (even by an hour) incur grade-point penalty
— very important (for project) to avoid slippage
— can accelerate by jumping through labs ahead of schedule

Will have midterm to check basic coding proficiency

Grading scheme:

— 50% project (proposal, implementation, success, report)
— 36% weekly lab (4 installments: success/demo, write-up)
— 7% midterm (coding example)

— 7% participation/attendance of lecture

Course Website

* Visit
http://www.physics.ucsd.edu/~tmurphy/phys124/
— Assignments

— Lab Exercises
— Useful Links
— Contact Info & Logistics
* May want to look at Lecture 2 for Week 1 Lab

— especially you Tuesday folks...

1/4/16

12

