

UCSD	Physics 12	UCSD Physics 12
 UCSD Puzzle: Carbon-based a.m.u. The atomic mass unit (a.m.u.) is based on ¹²C 6 protons, 6 neutrons, 6 electrons defined to be 12.0000000000 a.m.u. Adding up the constituent masses: protons: 6×1.00727647 = 6.04365876 neutrons: 6×1.008664923 = 6.051989538 electrons: 6×0.000548579909 = 0.0032914 	Physics 12	UCSD Physics 12 What holds it together? • If like charges repel, and the nucleus is full of protons (positive charges), why doesn't it fly apart? - repulsion is from electromagnetic force - at close scales, another force takes over: the strong nuclear force • The strong force operates between quarks: the building blocks of both protons and neutrons
 all together: 12.09894 But this isn't 12.000000 differs by 0.82% What could possibly <i>lower</i> the mass? Spring 2013	3	 it's a short-range force only: confined to nuclear sizes this binding overpowers the charge repulsion and the <i>binding energy</i> reduces the mass of the composite separating tightly bound particles requires energy input so much energy, that it registers mass equivalent via <i>E</i> = <i>mc</i>² mass left after separating must account for energy to split Spring 2013 Q

Nuclear Fission

UCSD	Physics 12	
	Counting particles	
 A nucleus has definite numb total number 	is a definite number of protons (Z), a ber of neutrons (N), and a definite of <i>nucleons</i> : $A = Z + N$	
 example, the protons and Z = 6; N = 	most common <i>isotope</i> of carbon has 6 6 neutrons (denoted ¹² C; 98.9% abundance) 6; A = 12	
 another stab neutrons (de Z = 6; N = 	le <i>isotope</i> of carbon has 6 protons and 7 noted ¹³ C; 1.1% abundance) 7; A = 13	
 an unstable : neutrons (de decays via 	isotope of carbon has 6 protons and 8 noted ¹⁴ C; half-life is 5730 years) beta decay to ¹⁴ N	
• Isotopes of an	a element have same Z , differing N	
Spring 2013	7	

UCSD	Physics 12
Radioactivity Demonstration	on
 Have a Geiger counter that clicks when a gamma ray, beta decay particle, or alp not 100% efficient at detection, but represe 	ever it detects ha particle. ntative of rate
• Have three sources:	
 - ¹⁴C (carbon-14) with half life of 5730 years about 4200 β decays per second in this sample corresponds to 25 ng, or 10¹⁵ particles 	s (to ¹⁴ N)
 - ⁹⁰Sr (strontium-90) with half-life of 28.9 ye about 180 β decays per second in this sample (a contains about 40 pg (240 billion nuclei; was 45 produced in nuclear reactor 	ears actually double this) 0 billion in 1987)
 - ⁴⁰K (potassium-14) with half-life of 1.27 G 0.0117% of natural potassium 4 cm³ of KCl has ~4×10^{18 40}K particles; 70 β² de 	yr (to ⁴⁰ Ca) ecays/sec
Spring 2013	11

Source	Sea Level	Denver
cosmic rays	28	55
terrestrial (rock)	46	90
food and water	40	
air (mostly radon)	200	
air travel	1 per 1,000 miles traveled	
house	7 if made of stone/brick/concrete	
medical X-ray	40 each (airport X-ray negligible)	
nuclear med. treatment		14 each
within 50 miles of nuclear plant		0.009
within 50 miles of coal plant	0.03	
total for no travel/medical	316	387

Olu	mum isotopes ar	id others of	interest
Isotope	Abundance (%)	half-life	decays by:
²³³ U	0	159 kyr	α
²³⁴ U	0.0055	246 kyr	α
²³⁵ U	0.720	704 Myr	α
²³⁶ U	0	23 Myr	α
²³⁷ U	0	6.8 days	β .
²³⁸ U	99.2745	4.47 Gyr	α
²³⁹ Pu	no natural Pu	24 kyr	α
²³² Th	100	14 Gyr	α

18

CSD	Physics 12
Aside on n	uclear bombs
• Since neutrons initiate creates more neutrons, chain reaction	fission, and each fission there is potential for a
• Have to have enough f intercept liberated neur	issile material around to rons
Critical mass for ²³⁵ U i about 5 kg	s about 15 kg, for ²³⁹ Pu it's
• Bomb is dirt-simple: so masses and just put the (quickly) when you wa	eparate two sub-critical m next to each other int them to explode!
– difficulty is in <i>enrichin</i>	g natural uranium to mostly ²³⁵ U
Spring 2013	24

Nuclear Fission

