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Why we need to know about materials

« Stuff is made of stuff
— what should your part be made of?
— what does it have to do?
— how thick should you make it
* The properties we usually care about are:
— stiffness
— electrical conductivity
— thermal conductivity
— heat capacity
— coefficient of thermal expansion
— density
— hardness, damage potential
— machine-ability
— surface condition
— suitability for coating, plating, etc.
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Electrical Resistivity

* Expressed as pinQm
— resistance = p-L/A
« where L is length and A is area
— conductivity is 1/p

Material p (x10° Q-m) | comments
Silver 0.0147 $$
Gold 0.0219 $38$
Copper 0.0382 cheapest good conductor
Aluminum 0.047
Stainless Steel 0.06-0.12
Winter 2012 3
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Thermal Conductivity

« Expressed as x in Wm" K-!
— power transmitted = k*A-AT/t,
« where A is area, tis thickness, and AT is the temperature across the

material

Material K (Wm'K') | comments

Silver 422 room T metals feel cold

Copper 391 great for pulling away heat

Gold 295

Aluminum 205

Stainless Steel 10-25 why cookware uses S.S.

Glass, Concrete,Wood 0.5-3 buildings

Many Plastics ~0.4 room T plastics feel warm

G-10 fiberglass 0.29 strongest insulator choice

Stagnant Air 0.024 but usually moving...

Styrofoam 0.01-0.03 can be better than air!
Winter 2012 4
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Specific Heat (heat capacity)

* Expressed as ¢, in J kg”' K
- energy stored = ¢, m'AT
« where mis mass and AT is the temperature change

UCSD: Physics 121; 2012

Coefficient of Thermal Expansion

» Expressed as o = dL/L per degree K
— length contraction = a-AT-L,
» where AT is the temperature change, and L is length of material

Material a (x10° K1) | comments
Most Plastics ~100
Aluminum 24
Copper 20
Steel 15
G-10 Fiberglass 9
Wood 5
Normal Glass 3-5
Invar (Nickel/Iron alloy) 1.5 best structural choice
Fused Silica Glass 0.6
Winter 2012 6

Material c, (J kg K') | comments

water 4184 powerhouse heat capacitor

alcohol (and most liquids) 2500

wood, air, aluminum, plastic 1000 most things!

brass, copper, steel 400

platinum 130

Winter 2012 &5
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Density

» Expressed as p = m/Vin kg:m

Material p (kg m3) comments
Platinum 21452
Gold 19320 tell this to Indiana Jones
Lead 11349
Copper, Brass, Steels 7500-9200
Aluminum Alloys 2700-2900
Glass 2600 glass and aluminum v. similar
G-10 Fiberglass 1800
Water 1000
Air at STP 1.3
Winter 2012 7
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Stress and Strain

» Everything is a spring!
— nothing is infinitely rigid
* You know Hooke’s Law:
F=k-oL
— where k is the spring constant (N/m), 6L is length change
— for a given material, k should be proportional to A/L
— say k = E-A/L, where E is some elastic constant of the

material
» Now divide by cross-sectional area
F/A=o=kol/A=E¢ o=E¢

— where ¢is 6L/L: the fractional change in length
* This is the stress-strain law for materials

— ois the stress, and has units of pressure

— ¢is the strain, and is unitless

Winter 2012 8
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Stress and Strain, lllustrated

* A bar of material, with a force F
applied, will change its size by:

bL/lT —'e = o/E = F/AE . ] — L
+ Strain is a very useful number, belngF 5
dimensionless
+ Example: Standing on an aluminum A
rod: — [— sl
— E=70x10° N-m?2 (Pa)
— say areais 1 cm2 = 0.0001 m? o=F/A
— saylengthis 1 m
~ weightis 700 N e =0L/L
— 0=7x108 N/m2
— £=10%— 6L =100 um o=E-¢

— compression is width of human hair

Winter 2012 9
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Elastic Modulus
» Basically like a spring constant

— for a hunk of material, k = E(A/L), but E is the only part of
this that is intrinsic to the material: the rest is geometry

 Units are N/m?, or a pressure (Pascals)

Material E (GPa)
Tungsten 350
Steel 190-210
Brass, Bronze, Copper 100-120
Aluminum 70
Glass 50-80
G-10 fiberglass 16
Wood 6-15
most plastics 2-3
Winter 2012 10
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Bending Beams

/ tension: stretched

neutral “plane”

compression

* A bent beam has a stretched outer surface, a compressed inner
surface, and a neutral surface somewhere between
 If the neutral length is L, and neutral radius is R, then the strain
at some distance, y, from the neutral surface is (R + y)/R - 1
- ¢=yR
— because arclength for same A6 is proportional to radius
— note L = RAO
* Sostressatyis o=Ey/R

Winter 2012 11
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In the Moment

» Since each mass/volume element is still, the net force

is zero

— Each unit pulls on its neighbor with same force its neighbor
pulls on it, and on down the line

— Thus there is no net moment (torque) on a mass element,
and thus on the whole beam

« otherwise it would rotate: angular momentum would change
— But something is exerting the bending influence

— \//—\/\
BRS
@ R And we call this “something”
—] f— the moment (balanced)
—
Winter 2012 12
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What's it take to bend it?

» At each infinitesimal cross section in rod with
coordinates (x, y) and area dA = dxdy:
— dF = odA = (Ey/R)dA
— where y measures the distance from the neutral surface
— the moment (torque) at the cross section is just dM = y-dF
— so dM = Ey2dA/R

integrating over cross section:

E EI
M Z/Ey2dxdy = —

R

where we have defined the “moment of inertia” as

I= /y2dacdy

Winter 2012 13
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Energy in the bent beam

* We know the force on each volume element:
— dF = 0dA = E-¢dA = (Ey/R)dA
* We know that the length changes by 6L = edz = o-dz/E
*« So energy is: /Z-direction
— dW =dF 8L = dF-¢:dz = E-e-dA x &-dz = E(y/R)2dxdydz
 Integrate this throughout volume
W = % /demdydz = EIL

R2

« So W=M(L/R) = MO x
— where 6 is the angle through which the beam is bent

Winter 2012 14
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Calculating beam deflection

* We start by making a free-body diagram so that all
forces and torques are balanced
— otherwise the beam would fly/rotate off in some direction

2,000 Ds/ft

A
Y 4000Bs 3000Ds 2000 bs

— In this case, the wall exerts forces and moments on the
beam (though A,=0)

— This example has three point masses and one distributed
load

Winter 2012 15
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Tallying the forces/moments

2,000 hs/ft

Ay
4000Ds 3000bs 2,000 bs

- A =0; A, = 21,000 Ibs
* M, = (4)(4000) + (8)(3000) + (14)(2000) + (11)(6)
(2000) = 200,000 ft-lbs

— last term is integral:

" 2m2
M:/ Azdm:[A%] :A%(zrm):mz)m

— where A is the force per unit length (2000 Ibs/ft)

Winter 2012 16
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A Simpler Example

Fy=mg=AL

| M, = A<z>Az = MLI2)L = 4 AL2

z-axis

force per unit length = A; total force = mg = AL

* A cantilever beam under its own weight (or a uniform weight)

- F,and M,, have been defined above to establish force/moment
balance

— At any point, distance z along the beam, we can sum the moments
about this point and find:

L
Miot = Mext — 2Fy + / Az —2')de' = %AL2 — ALz + ALz — %)\L2 =0
0

— validating that we have no net moment about any point, and thus
the beam will not spin up on its own!

Winter 2012 17

01/10/2008

UCSD: Physics 121; 2012

What's the deflection?

Fy=mg=AL

| M, = A<z>Az = ALI2)L = 4 AL2

z-axis

force per unit length = A; total force = mg = AL

« Atany point, z, along the beam, the unsupported moment is given by:
M(z) = L)\(zfz’)dz’ =\|Lz—2%— L + 21 7E(z2 — 2Lz +L?%)
A - 2 " 2| 2L
« From before, we saw that moment and radius of curvature for the beam
are related:
- M=EIR
« And the radius of a curve, Y, is the reciprocal of the second derivative:
— d?Y/dz? = 1/R = M/EI

m,
— so for this beam, d2Y/dz2 = M/El = 9

T 2EIL

(22— 2Lz + L?)

Winter 2012 18
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Calculating the curve

« |f we want to know the deflection, Y, as a function of
distance, z, along the beam, and have the second
derivative...

 Integrate the second derivative twice:
@Yy 0myg <z4 Lz®  L2%2?

dz2 ~  2EIL 12 3

(22— 2L2+1%) —»Y = -9 5 s

2EIL

+Cz+D)

— where C and D are constants of integration

— at z=0, we define Y=0, and note the slope is zero, so C and
D are likewise zero

so, the beam follows:

mg 4 3 2,2

= —4L L

SAETL (= 2% + 6L%2%)

mgL?3

8EI

with maximum deflection at end: Ymax =

Winter 2012 19
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Bending Curve, lllustrated

» Plastic ruler follows expected cantilever curve!

Plastic ruler under own weight

Theoretical
O  Experiment
-2} R
4
E
S g
E
-8
10} 1
Curve fit - E=3.6 GPa
12 .
o 5 10 15 20 25 30
z[em)
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End-loaded cantilever beam
F,=F

l M,y = FL

» Playing the same game as before (integrate moment
from z to L): ey 1 Me) F

M(z)=(z—L)F—>W_R(Z)= yoTi =E(Z—L)

— which integrates to:

3 2
F (Z__Liwzw)

TEI\6 2
— and at z=0, Y=0 and slope=0 — C = D = 0, yielding:
— F 3 2 = Lm
Y= @(z —3Lz%) Yimax = TET

Winter 2012 21
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Simply-supported beam under own weight

F,=mgl2 = AL/2 F,=mgl2 = ALI2

ATTHRRRRRERG

force per unit length = A; total force = mg = AL
» This support cannot exert a moment
L
M(z2) = / Az —2')d2' + %AL(L —z)= %)\(Lz —2%)

UCSD: Physics 121; 2012
Simply-supported beam with centered weight
F,=FI2 F, = Fi2

A

A

* Working only from 0 < z < L/2 (symmetric):

L\ F Fz &Y _ Fz
M) =F(z-2 )+ (L—2)="2,%2 -T2
@) (Z 2) A A s R Vol

— integrating twice, setting Y(0) =0, Y’(L/2) = 0:

F F [, 3I%
_IZEI(Z +Cz+D)—Y = <z

12E1 4
— and the max deflection (at z=L/2):
_FLI?
T 48ET
Winter 2012

23

2y A 5 A (L2
W—E(Lz—z )AY—E(T—E+CZ+D>
— at z=0, Y=0 — D = 0; at z=L/2, slope =0 — C = -L3/12
__mg 3_ 4_ 73 _ 5 mgL?
Y = sapr (312 =2 = 1%2) Yoex = a Ty
Winter 2012 22
UCSD: Physics 121; 2012
S-flex beam
F
“walls” are held vertical; beam flexes in
| M., = FL/2 “S” shape

M. = FL/2 total M(z) = 2M,, - Fz - F(L-z) = 0 for all z
) F

» Playing the same game as before (integrate moment
from z to L):

2
M(z)= Myw—F(L—2) = Fz— 2L &Y 1 Mz _F

5 " & " R@) - BI 2BI

2z—1L)
— which integrates to:

F (2% L2?
Yfﬁ(E—T+Cz+D>

— and at z=0, Y=0 and slope=0 — C = D = 0, yielding:

F (2% L2? , FL3
Y =35 (3 - T) Yi(L) =0 Yiax = 1557
as it should be

Winter 2012 24
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Cantilevered beam formulae

BEAMTYPE SLOPE AT FREE END | DEFLECTION AT ANY SECTION IN TERMS OF MAXIMUM DEFLECTION
1. Cantllever Beam — Concentrated load P a the free end
Pz P P o
5 o=3m y=eg¥ o) 71
N - 2
A S
7 Cantilever Beam ~ Concentrated Toad P af iy pot
P2
e y=eg(3a-x) for 0<x<a P
¥ ] y=2 (3x-a) for a<x<i " 6H
| A R— b G6EI
3 Cantlever Besm — Uniforaaly disribued load o (V)
= : - oc 1
s 8=2 Y= (2 + 617 —4lx) B e
N - GE 2l E
i i
3 Canfilever Beam ~ Unifornily varving load: Mavimum iensity o OVm)
o=l 3= (107 105+ Sl - ) 5 =2l
2 T20ET = =30
Mt e fee end
M : 2
o= y=2 5=
H 28 28
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Simply Supported beam formulae

MAXIMUM AND CENTER
DEFLECTION
0, r o,
A 19 L 2 2 3
3. 6,=0,=21 y=L5 (i—xz) for 0<x<t s =tL
v | T 16E1 12E 4 2 48EI
7_Beam Simply at Ends - C ted load P at any point
Pbx
Py 2y =25 (12— 5%) for 0<a v
T P R o) v\ ) 0 <xa Pl MY sy
5 GIET PO TL e o = o\BIEI
l X S Pab(21-b) Y=g b(.r a) +(1*-5%)x-3 Pb
» P o= 5= 0 (317 -457) at the center, if a > b,
for a<x<l 48EI
8. Beam at Ends — Uniformly distributed load o (N/m)
o x X
"
S 6,=0,=20 y=—2% (P2 + 2 5=t
[ n Ir T nE g A 0) =" 33421
L
9. Beam Simply Supported at Ends — Couple moment M at the right end
M?* ]
M M S = at x =
o TN o gar m( x’] ="ohEm "B
y=r{1-7 :
i | 6= M e\ P 5= 2 4t the center
327 16
10 Beam. at Ends — Uniformly varying load: @ (N/m)
0=%x 1 To ot
0, T o Ao x 8= 5., 20006522 at x=0.5191
360EL y= _36“"]-";[ (70 -10P4 +32) ,AH
y ; 6, =20 5=0006512< at the center
45EL £
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Lessons to be learned

» All deflections inversely proportional to E
— the stiffer the spring, the less it bends
« All deflections inversely proportional to /
— cross-sectional geometry counts
» All deflections proportional to applied force/weight
— inlinear regime: Hooke’s law
» All deflections proportional to length cubed
— pay the price for going long!
— beware that if beam under own weight, mg « L also (so L*)
« Numerical prefactors of maximum deflection, Y,,,, for same
load/length were:
— 1/3 for end-loaded cantilever
— 1/8 for uniformly loaded cantilever
— 1/48 for center-loaded simple beam
— 5/384 ~ 1/77 for uniformly loaded simple beam
» Thus support at both ends helps: cantilevers suffer

Winter 2012 27
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Getting a feel for the /-thingy

* The “moment of inertia,” or second moment came
into play in every calculation

I= /y2d:cdy

» Calculating this for a variety of simple cross sections:
* Rectangular beam:
2 L 371% 3 2
b _[* P pdy—al|L]T A%
D 1_/_%(1@/_%@,@_(1[3}7%_ 12 12a
a
— note the cube-power on b: twice as thick (in the direction of

bending) is 8-times better!
— For fixed area, win by fraction b/a

Winter 2012 28
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Moments Later

+ Circular beam
— work in polar coordinates, with y = rsinf

R 27 4 2
Q I:/ Td’!‘/ TzsiHZGdG:ﬁ:A—
0 0 4 4m

radius, R
— note that the area-squared fraction (1/4x) is very close to
that for a square beam (1/12 when a = b)

— so for the same area, a circular cross section performs
almost as well as a square

+ Circular tube ) ' '
inner radius Ry, outer radius R,
or, outer radius R, thickness t
R» 27 . T A
I= /R rdr /0 r?sin® 0d6 = Z(Rg—R;*) = Z(R§+R‘;’)(R%—Rf) = Z(R§+R§)
1
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And more moments

e Circular tube, continued
— if R, = R, Ry = R-t, for small t: | = (A%/4x)(RIt)
— for same area, thinner wall stronger (until crumples/dents
compromised integrity) a
* Rectangular Tube
— wall thickness =t

$ H H bt ¥oog-t? 5 —1)°
1=2/ dz/ y2dy+2/ dz/ yvidy =2a | — — -1 +4tu
P st Jopt 24 3 3

— and if t is small compared to a & b:

I~@+Le't I N2a3t~A72€
~ g and for a square geom.: sq N 5= N oy

b

— note that for a = b (square), side walls only contribute 1/4 of
the total moment of inertia: best to have more mass at larger
y-value: this is what makes the integral bigger!

Winter 2012 30
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The final moment

e The I-beam

— we will ignore the minor contribution from the “web”
connecting the two flanges

a b 3 b 3 2
53—t
lb I:2/2dz 2;y2aly:2a|:b——(2 ):lzab—t
-5 e

a
| —]

24 3 2

— note this is just the rectangular tube result without the side
wall. If you want to put a web member in, it will add an extra
b3t/12, roughly A2bb

— interms ofarea=2at: *~ § 4%

* The I-beam puts as much material at high y-value as
it can, where it maximally contributes to the beam
stiffness

— the web just serves to hold these flanges apart

Winter 2012 31
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Lessons on moments

» Thickness in the direction of bending helps to the
third power
— always orient a 2x4 with the “4” side in the bending direction

» For their weight/area, tubes do better by putting
material at high y-values

* |-beams maximize the moment for the same reason

» For square geometries, equal material area, and a
thickness 1/20 of width (where appropriate), we get:
— square solid: / = A2/12 =~ 0.083A2
— circular solid: / = A%/47 ~ 0.080A2
— square tube: | =~ 20A%/24 ~ 0.83A2
— circular tube: | = 10A2/47 ~ 0.80A2
— |-beam: | =~ 20A%/8 ~ 2.5A2

* |-beam wins hands-down

}10>< better than solid form

func. of assumed 1/20 ratio

Winter 2012 32
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Beyond Elasticity

* Materials remain elastic for a while
— returning to exact previous shape

» But ultimately plastic (permanent) deformation sets in
— and without a great deal of extra effort

= proportionality limit
Sliszs elastic limit ulimate stress
yield stress /
G
G

fracture

Gu | Ulimate stress

G; | Fracture stress
yielding strain hardening necking

Gy | Yield stress

Gl | Proportionality fimit

" Strain
I plastic behavior LI 4
elastic
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Breaking Stuff
Once out of the elastic region, permanent damage
results

— thus one wants to stay below the yield stress
— yield strain = yield stress / elastic modulus

UCSD: Physics 121; 2012

Notes on Yield Stress

* The entries in red in the previous table represent
ultimate stress rather than yield stress
— these are materials that are brittle, experiencing no plastic
deformation, or plastics, which do not have a well-defined
elastic-to-plastic transition
* There is much variability depending on alloys
— the yield stress for steels are
stainless: 280-700
machine: 340-700
high strength: 340—1000
tool: 520
spring: 400—1600 (want these to be elastic as long as possible)
— aluminum alloys

* 6061-T6: 270 (most commonly used in machine shops)
+ 7075-T6: 480

Winter 2012 35

Material Yield Stress (MPa) Yield Strain
Tungsten*® 1400 0.004
Steel 280-1600 0.0015-0.0075
Brass, Bronze, 60-500 0.0005-0.0045
Copper
Aluminum 270-500 0.004-0.007
Glass* 70 0.001
Wood 30-60 0.0025-0.005
most plastics™ 40-80 0.01-0.04
* ultimate stress quoted (see next slide for reason)
Winter 2012 34
UCSD: Physics 121; 2012
Shear Stress
dA wall
bolt
. 14 v = F/A, where A is bolt’s
cross-sectional area
hanging mass
« 7 = G)/ huge force, F

— tis the shear stress (N-m2) = force over area = F/dA
« dAis now the shear plane (see diagram)
— G is the shear modulus (N-m2)
— yis the angular deflection (radians)
* The shear modulus is related to E, the elastic modulus
- E/IG=2(1+v)
— v is called Poisson’s ratio, and is typically around 0.27-0.33

Winter 2012
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Practical applications of stress/strain

* Infrared spectrograph bending (flexure)

— dewar whose inner shield is an aluminum tube 1/8 inch (3.2
mm) thick, 5 inch (127 mm) radius, and 1.5 m long

— weight is 100 Newtons
— loaded with optics throughout, so assume (extra) weight is
20 kg — 200 Newtons

— If gravity loads sideways (when telescope is near horizon),
what is maximum deflection, and what is maximum angle?

— calculate | = (A%/4x)(R/t) = 2x10° m*

— E=70x10°

= Yrmax = MgL38El = 90 um deflection

— Y ax = MgL2/6El = 80 uR angle

» Now the effect of these can be assessed in
connection with the optical performance

Winter 2012 37
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Applications, continued

» A stainless steel flexure to permit parallel displacement

—d

o]

— each flexing member has length L = 13 mm, width a = 25 mm, and
bending thickness b = 2.5 mm, separated by d = 150 mm

— how much range of motion do we have?

— stress greatest on skin (max tension/compression)

- Max strain is ¢ = g,/E = 280 MPa / 200 GPa = 0.0014

— strainis y/R, so b/2R =0.0014 — R = /0.0028 = 0.9 m

— 0=1L/R=0.013/0.9 = 0.014 radians (about a degree)

— so max displacement is about d-6=2.1 mm

— energy in bent member is EIL/R? = 0.1 J per member — 0.2 J total

- W=Fd— F=(0.2J)/(0.002m) =100 N (~ 20 Ib)

Winter 2012 38
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Flexure Design

* Sometimes you need a design capable of flexing a
certain amount without breaking, but want the thing to
be as stiff as possible under this deflection

— strategy:

work out deflection formula;

decide where maximum stress is (where moment, and

therefore curvature, is greatest);

» work out formula for maximum stress;

+ combine to get stress as function of displacement

« invert to get geometry of beam as function of tolerable stress
— example: end-loaded cantilever

FL? Ay is displacement from
Yinax = 3EI centerline (half-thickness)

M(z) =F(z— L) > maxat 2 =0

A AyM, FLA: FLA
max strain, &€ = oY % = ﬁy — max stress, Opmayx = Fe = %
Winter 2012 39
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Flexure Design, cont.

» Note that the ratio F// appears in both the Y, ., and o,

formulae (can therefore eliminate)
3EYmax LAy = 3EYmaxAy _ 3EYmaxh where h = 24y
L3 2 212 is beam thickness

F
Omax = TLAy =

» If | can tolerate some fraction of the yield stress
Omax = 0y/®, Where @ is the safety factor (often chosen to be 2)
Omax 2L? o, 2L? 212

TTE Vaax  OF W " 3¥max

* so now we have the necessary (maximum) beam thickness that
can tolerate a displacement Y, ., without exceeding the safety
factor, ®

Winter 2012 40
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Notes on Bent Member Flexure Design

*  When the flex members have moments at both ends, they curve
into more-or-less an arc of constant radius, accomplishing angle
(]

* R=EIIM, and 6= L/IR = ML/EI, where L is the length of the
flexing beam (not the whole assembly)
*  Omax = Eénax = EAYIR = hOEI2L, S0 h = (0,/ PE)x(2L16)
— where h=2Ayand R=L/6

Winter 2012 41
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Kinematic Design

» Physicists care where things are
— position and orientation of optics, detectors, etc. can really
matter
* Much of the effort in the machine shop boils down to
holding things where they need to be
— and often allowing controlled adjustment around the nominal
position
+ Any rigid object has 6 degrees of freedom
— three translational motions in 3-D space
— three “Euler” angles of rotation
« take the earth: need to know two coordinates in sky to which
polar axis points, plus one rotation angle (time dependent)
around this axis to nail its orientation
» Kinematic design seeks to provide minimal/critical
constraint

Winter 2012 42
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Basic Principles

» A three-legged stool will never rock
— as opposed to 4-legged
— each leg removes one degree of freedom, leaving 3
« can move in two dimensions on planar floor, and can rotate
about vertical axis
* A pin & hole constrain two translational degrees of
freedom

* A second pin constrains rotation

— though best if it's a diamond-shaped-pin, so that the device
is not over-constrained ﬂt/grinding lines

dowel pin N
a diamond pin is a home-made
modification to a dowel pin:
sides are removed so that the
pin effectively is a one-dim.
constraint rather than 2-d

Winter 2012 43
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Diamond Pin Idea

O O O

part with holes part with holes part with holes

O O O

O O O dowel pin

two dowel pins wrong separation

9) o

thermal stress, machining error

diamond pin O

O O o

perfect (lucky) fit does not fit

O @ e

but over-constrained constrains only rotation”
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Kinematic Summary

» Combining these techniques, a part that must be
located precisely will:
— sit on three legs or pads
— be constrained within the plane by a dowel pin and a
diamond pin
» Reflective optics will often sit on three pads
— when making the baseplate, can leave three bumps in
appropriate places
« only have to be 0.010 high or so
— use delrin-tipped (plastic) spring plungers to gently push
mirror against pads
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References and Assignment

* For more on mechanics:
— Mechanics of Materials, by Gere and Timoshenko

» For a boatload of stress/strain/deflection examples
worked out:
— Roark’s Formulas for Stress and Strain

* Reading from text:
— Section 1.5; 1.5.1 & 1.5.5; 1.6, 1.6.1, 1.6.5, 1.6.6 (3 ed.)
— Section 1.2.3; 1.6.1; 1.7 (1.7.1, 1.7.5, 1.7.6) (4" ed.)

» Additional reading on Phys239 website from 2010
— http://www.physics.ucsd.edu/~tmurphy/phys239/lectures/twm_lecture6.pdf
— very similar development to this lecture, with more text
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