

Why Vacuum?

- Anything cryogenic (or just very cold) needs to get rid of the air
 - eliminate thermal convection; avoid liquefying air
- Atomic physics experiments must get rid of confounding air particles
 - eliminate collisions
- Sensitive torsion balance experiments must not be subject to air
 - buffeting, viscous drag, etc. are problems
- Surface/materials physics must operate in pure environment
 - e.g., control deposition of atomic species one layer at a time

Winter 2012

UCSD: Physics 121; 2012

Measures of pressure

- The "proper" unit of measure for pressure is Pascals (Pa), or N·m⁻²
- · Most vacuum systems use Torr instead
 - based on mm of Hg
- · Atmospheric pressure is:
 - 760 Torr
 - 101325 Pa
 - 1013 mbar
 - 14.7 psi
- So 1 Torr is 133 Pa, 1.33 mbar; roughly one milliatmosphere

Winter 2012

UCSD: Physics 121; 2012 Properties of a vacuum Vacuum Pressure Number M.F.P. Surface Collision Monolayer Density (m⁻³) (m) Freq. (m-2·s-1) Formation (torr) Time (s) 2.7×10^{25} 7×10⁻⁸ 3×10^{27} 3.3×10⁻⁹ Atmosphere 760 10-3 3.5×10¹⁹ 0.05 4×10^{21} 2.5×10⁻³ Rough High 10-6 3.5×10¹⁶ 50 4×10¹⁸ 2.5 4×10¹⁵ Very high 10-9 3.5×10¹³ 50×10³ 2.5×10³ Ultrahigh 10-12 3.5×10¹⁰ 50×10⁶ 4×10¹² 2.5×10⁶ Winter 2012

Kinetic Theory

 The particles of gas are moving randomly, each with a unique velocity, but following the Maxwell Boltzmann distribution:

$$f(v) = \left(\frac{m}{2\pi kT}\right)^{\frac{3}{2}} e^{-mv^2/2kT}$$

The average speed is:

$$\bar{v} = \left(\frac{8kT}{\pi m}\right)^{\frac{1}{2}}$$

- With the molecular weight of air around 29 g/mole (~75% N₂ @ 28; ~25% O₂ @ 32), 293 °K:
 - $m = 29 \times 1.67 \times 10^{-27} \text{ kg}$
 - < v > = 461 m/s
 - note same ballpark as speed of sound (345 m/s)

Winter 2012

UCSD: Physics 121; 2012

Mean Free Path, cont.

- Now that we have the collision frequency, Z, we can get the average distance between collisions as:
 λ = v/Z
- So that

$$\lambda = \frac{1}{4\sqrt{2}\pi nr^2}$$

- For air molecules, $r \approx 1.75 \times 10^{-10}$ m
- So $\lambda \approx 6.8 \times 10^{-8}$ m = 68 nm at atmospheric pressure
- Note that mean free path is inversely proportional to the number density, which is itself proportional to pressure
- So we can make a rule for $\lambda = (5 \text{ cm})/(P \text{ in mtorr})$

Winter 2012

012

UCSD: Physics 121; 2012

Mean Free Path

- The mean free path is the typical distance traveled before colliding with another air molecule
- Treat molecules as spheres with radius, r
- If (the center of) another molecule comes within 2r of the path of a select molecule:
- Each molecule sweeps out cylinder of volume:

$$V = 4\pi r^2 vt$$

- in time t at velocity v
- If the volume density of air molecules is *n* (e.g., m⁻³):
 - the number of collisions in time *t* is

$$not Z = 4\pi nr^2 vt$$

 Correcting for relative molecular speeds, and expressing as collisions per unit time, we have:

$$Z = 4\sqrt{2}\pi nr^2v$$

Winter 2012

UCSD: Physics 121; 2012

Relevance of Mean Free Path

- Mean free path is related to thermal conduction of air
 - if the mean free path is shorter than distance from hot to cold surface, there is a collisional (conductive) heat path between the two
- Once the mean free path is comparable to the size of the vessel, the paths are ballistic
 - collisions cease to be important
- Though not related in a 1:1 way, one also cares about transition from bulk behavior to molecular behavior
 - above 100 mTorr (about 0.00013 atm), air is still collisionally dominated (viscous)
 - λ is about 0.5 mm at this point
 - below 100 mTorr, gas is molecular, and flow is statistical rather than viscous (bulk air no longer pushes on bulk air)

Winter 2012

8

Lecture 6Lecture 5

2

Gas Flow Rates

 At some aperture (say pump port on vessel), the flow rate is

S = dV/dt (liters per second)

· A pump is rated at a flow rate:

 $S_p = dV/dt$ at pump inlet

• The mass rate through the aperture is just:

Q = PS (Torr liter per second)

 And finally, the ability of a tube or network to conduct gas is

C (in liters per second)

· such that

 $Q = (P_1 - P_2) \times C$

Winter 2012

Evacuation Rate

- · What you care about is evacuation rate of vessel
- $S = Q/P_1$
- but pump has $S_p = Q/P_2$
- Q is constant (conservation of mass)
- $Q = (P_1 P_2)C$, from which you can get: $1/S = 1/S_n + 1/C$

- the more restrictive will dominate
- Usually, the tube is the restriction
 - example in book has 100 l/s pump connected to tube 2.5 cm in diameter, 10 cm long, resulting in flow of 16 l/s
 - pump capacity diminished by factor of 6!

Winter 2012 10

UCSD: Physics 121; 2012

Tube Conductance

- For air at 293 K:
- In bulk behavior (> 100 mTorr):

 $C = 180 \times P \times D^4/L$

(liters per second)

- D, the diameter, and L, the length are in cm; P in Torr
- note the strong dependence on diameter!
- example: 1 m long tube 5 cm in diameter at 1 Torr:
 - allows 1125 liters per second
- In molecular behavior (< 100 mTorr):

$$C = 12 \times D^3/L$$

- now cube of D
- same example, at 1 mTorr:
 - allows 0.1 liters per second (much reduced!)

Winter 2012

11

Pump-down time

- Longer than you wish
 - Viscous air removed quickly, then long slow process to remove rest
 - to go from pressure P_0 to P, takes $t = (V/S) \times \ln(P_0/P)$
 - note logarithmic performance

Winter 2012

Lecture 6Lecture 5

3

UCSD: Physics 121; 2012

UCSD: Physics 121; 2012

Cryopumping

• A cold surface condenses volatiles (water, oil, etc.) and even air particles if sufficient nooks and crannies exist

- a dessicant, or getter, traps particles of gas in cold molecular-sized "caves"

• Put the getter in the coldest spot

- helps guarantee this is where particles trap: don't want condensation on critical parts

- when cryogen added, getter gets cold first

• Essentially "pumps" remaining gas, and even continued outgassing

• Called cryo-pumping

Liquid Nitrogen Dewar

- Many Dewars are passively cooled via liquid nitrogen, at 77 K
- A bath of LN₂ is in good thermal contact with the "inner shield" of the dewar
- The connection to the outer shield, or pressure vessel, is thermally weak (though mechanically strong)
 - G-10 fiberglass is good for this purpose
- Ordinary radiative coupling of σ(T_h⁴ T_c⁴) = 415 W/m² is cut to a few W/m²
 - Gold plating or aluminized mylar are often good choices
 - bare aluminum has $\varepsilon \approx 0.04$
 - − gold is maybe $ε \approx 0.01$
 - aluminized mylar wrapped in many layered sheets is common (MLI: multi-layer insulation)
 - MLI wants to be punctured so-as not to make gas traps: makes for slooooow pumping

Winter 2012 22

UCSD: Physics 121; 2012

Cryogen Lifetime

- Note that LN₂ in a bucket in a room doesn't go "poof" into gas
 - holds itself at 77 K: does not creep to 77.1K and all evaporate
 - due to finite "heat of vaporization"
 - LN₂ is 5.57 kJ/mole, 0.81 g/mL, 28 g/mol → 161 J/mL
 - L⁴He is 0.0829 kJ/mol, 0.125 g/mL, $4 \text{ g/mol} \rightarrow 2.6 \text{ J/mL}$
 - H₂O is 40.65 kJ/mol, 1.0 g/mL, 18 g/mol → 2260 J/mL
- If you can cut the thermal load on the inner shield to 10 W, one liter of cryogen would last
 - 16,000 s ≈ 4.5 hours for LN₂
 - 260 s ≈ 4 minutes for LHe

Winter 2012

Nested Shields

• LHe is expensive, thus the need for nested shielding
• Radiative load onto He stage much reduced if surrounded by 77 K instead of 293 K

- σ(293⁴ - ⁴⁴) = 418 W/m²

- σ(77⁴ - ⁴⁴) = 2.0 W/m²

- so over 200 times less load for same emissivity

- instead of a liter lasting ⁴ minutes, now it's 15 hours!

- based on 10 W load for same configuration at LN₂

Adiabatic Magnetization Cooling

T Adiabatic process

T + ΔT adiabati

Coolest place on earth: UCSD: Physics 121; 2012

- · Antarctica -89 °C, or 183K
- San Diego: Dilution fridges
 Mayer Hall (Maple, Goodkind), NSB (Butov) ~300 mK
- Cambridge, MA: Sub-500 picoKelvin achieved in Ketterle group at MIT

See "Cooling Bose-Einstein Condensates Below 500 Picokelvin" Science 301, 5639 pp. 1513 - 1515 (2003)

Winter 2012 slide courtesy O. Shpyrko

Photos: Displex Cryostat insert

Winter 2012 slide courtesy O. Shpyrko 28

Assignments

- Read 3.1, 3.2, 3.3.2, 3.3.4, 3.4: 3.4.1 (Oil-sealed and Turbomolecular, 3.4.3 (Getter and Cryo), 3.5.2 (Oring joints), 3.6.3, 3.6.5
 - applies to both 3rd and 4th editions

Winter 2012

34