
Phys 239 Quantitative Physics Lecture 10

Stat Mech for Hobos

Before moving into heat transfer, mechanics of materials, and sound, it is useful to touch on a few topics in
statistical mechanics, at the approximate level suited to this course.

Heat Capacity

We already have made a fair bit of use of heat capacity (especially of water) in the course. Most stuff (air,
wood, plastic) tends to have a heat capacity around 1000 J/kg/K. Water is exceptional at 4184 J/kg/K
(definition of kcal), other liquids tend to be around 2000, and metals dip to the 500 range or a bit less.
Compared to properties like thermal or electrical conductivity, density, etc. heat capacity tends to occupy a
relatively small range. Why is that?

At the atomic level, we know that the thermal energy of a particle is 1
2kT per degree of freedom. Atoms

in a solid may experience 3 degrees of translation. Single, loose atoms also have three available degrees of
freedom, so 3

2kT comes up a lot. A diatomic molecule (as in air) will have 6 degrees of freedom: three
translations, two rotations, and one vibration. But this is still three per atom. Larger molecules have a rich
spectrum of vibrational modes, but again working out to a total of three degrees of freedom per atom.

If we add thermal energy to a substance in the amount ∆E, it distributes among the N atoms such that
each atom gets an amount ∆E/N ∼ 3

2k∆T . We can count the number of atoms as the mass of the bulk
object, m, divided by the mass of an individual atom, matom = µ/NA, where µ is the molar mass (kg/mol,
for instance) and NA is Avogadro’s number. Thus we compute that the total energy added is

∆E =
3

2
Nk∆T =

3

2

m

matom
k∆T =

3

2

NAk

µ
m∆T ≡ cpm∆T,

where we have rearranged terms and posited that the energy change is the heat capacity, cp times the mass
and temperature change involved. Thus we identify the heat capacity as approximately

cp ≈
3NAk

2µ
.

The two constants in the numerator have giant and minuscule exponents (−23 and 23, respectively), mul-
tiplying to a tidy 8.3 J/K/mol (known as the gas constant, R, often used in chemistry). We therefore end
up with cp ∼ 12/µ. Most stuff is made of atoms averaging something like 15 g/mol, or µ = 0.015 kg/mol
(consider the prevalence of hydrogen in the average), in which case we compute a heat capacity around
800 J/kg/K—approximately on target. Now we have a better sense as to why heat capacities are not wildly
different among different substances. Metals have heavier atoms, thus lower heat capacity (though free
electrons share the thermal energy).

Collisions

Let’s think of a gas in which particles act essentially as billiard balls bouncing into each other. We consider
collisions as purely geometrical encounters of otherwise non-interacting spheres bumping into each other.

Thermal Velocity

Each particle (could be atom or molecule) has 3
2kT of energy dedicated to translation (additional energy

may be absorbed in vibrations), or in other words to 1
2mv

2. Equating these says that thermal velocity is

vth =

√
3kT

m
. (1)
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The Boltzmann constant is k = 1.38×10−23 J/K, so that at room temperature we get 4×10−21 J, equivalent
to 1

40 eV (worth committing to memory). The mass of an air molecule, at about 30 nucleons per molecule,
is about (0.03 kg/mol)/(6× 1023 mol−1) ≈ 5× 10−26 kg. Sticking these into Eq. 1 yields

vth ≈
√

12× 10−21

0.5× 10−25
=
√

24× 104 ≈ 500 m/s.

Sound speed is approximately this divided by
√

3, based on the fact that the velocity of the particle is split
over three dimensions (one third of its energy is in the direction of interest). It is actually a little more than
that by a factor of √γ, where γ = 7

5 for a diatomic gas.

Space Density

We use the symbol, n, to describe the number density of particles, in units #/m3, or simply m−3. You may
remember from chemistry classes that gases occupy 22.4 L/mol at STP (standard temperature and pressure;
where T = 0◦C). This translates to about 45 moles in a cubic meter. Multiply this by Avogadro’s number
and we find that the number density for any gas at STP is

n = 2.7× 1025 m−3. (2)

While we’re here we may as well enjoy the relation to mass density, whereby we can take the 45 mol/m3

multiplied by molar mass (kg/mol) to get mass density. For air, composed of about three-quarters N2

(28 g/mol) and one-quarter O2 (32 g/mol), the weighted mean is very close to 29 g/mol to yield 1.3 kg/m3

at 0◦C. Warmer air is slightly less dense, making 1.25 kg/m3 a convenient rational number.

Incidentally, we can take the species-independent number from Eq. 2 and note it to be 27× 1024 m−3, which
is a perfect cube of 3 × 108 m−1, indicating that the typical inter-particle separation is 3 nm (roughly 10
diameters, so 0.001 volume density, which relates to why gases are less dense than their equivalent fluids by
approximately this factor).

Colliding Spheres

We want to establish the cross section, σ, for collisions. This is just a geometrical area, in square meters. A
sphere of radius R has a cross section of πR2 to a point particle trying to hit it. But when another sphere
of radius R comes at it, they will hit if the impact parameter is less than 2R, so that σ = π(2R)2 = 4πR2.
A characteristic scale for R for atoms is 1 Å, or 10−10 m.

At what point would we expect a sphere of interest to run into another? Let’s imagine a slab of gas, with
area A and thickness λ. Within this volume we have nAλ particles. Each particle has an associated “collision
area” σ, so that the whole mess adds to a blockage area nAλσ. We “fill” the area, A, when the total area
occupied by collision cross sections equals A. This happens at a thickness

λ =
1

nσ
. (3)

We call this the mean free path, representing the distance one particle might expect to travel uninterrupted
before hitting another particle when the cross section for doing so is σ.

For the diatomic molecules of air, we are not dealing with spheres but with oblong things roughly 2 × 4 Å
in scale. If we take a characteristic diameter of 3 Å, we have σ ≈ π(3× 10−10)2, or 3× 10−19 m2. Using our
value for n, we find that λ = 1/nσ ≈ 10−7 m, or 100 nm. The “official” answer is 70 nm (sail past about 20
before hitting one), which we would get if we had adopted a characteristic diameter of 4 Å.
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Diffusion

First we’ll look at this in a more formal way, then devise a reasonable hobo-style shortcut. The diffusion
equation reads thusly:

∂φ

∂t
= D∇2φ, (4)

where φ might represent temperature (then this is called the Heat Equation), mass density, number density,
etc. For our purposes, we will concentrate on number density, n. As a hobo preview, we might say that at
some location of interest n changes by some amount ∆n in a time ∆t, and spatially changes by a similar
amount over spatial scale ∆x. We then write the diffusion equation as

∆n

∆t
= D

∆n

∆x2
,

by which we relate the diffusion constant D ∼ ∆x2/∆t, having units m2/s, or area per time.

Let’s try Eq. 4 on a trial function:

n(r, t) = n0e
−r/R, whereR→ R(t).

This is a centrally concentrated (peaked) function at the origin with characteristic radial scale R. Nothing
interesting happens in the angular dimensions, and I need the spherical Laplacian to handle the r-derivatives.
Shortcutting a few manipulation steps,

∇2n =
1

r2
∂

∂r

(
r2
∂n

∂r

)
=
n0
R2

(
1− 2

R

r

)
e−r/R,

while the time derivative yields
∂n

∂t
= −n0

( r

R2
Ṙ
)
e−r/R.

Equating these two with the diffusion constant and eliminating the exponential from both sides, we find that

rṘ = D

(
2
R

r
− 1

)
→ D =

rṘ

2R
r − 1

.

Evaluated at r = R, we find that D = RṘ = ∂
∂t (

1
2R

2). Because D is a constant, we have the result that R2

grows linearly in time. This is the key to diffusion: the boundary’s area grows linearly in time, or the
radius of influence grows as the square-root of time. Think of the diffusion constant as the rate at which
area grows (or at least radius-squared, or area/4π).

Hobo Diffusion

Now we will approach diffusion from a simple perspective: partial differential equations be damned. The
fundamental process is a random walk, the steps governed by collisions. We have already established the
mean free path, λ = 1/nσ in Eq. 3. We also know that the mean thermal velocity of the particles as given
in Eq. 1. We can combine these two to establish a mean time between subsequent collisions:

τ =
λ

v
.

In time ∆t, we therefore expect to see N = ∆t/τ collisions, which we can also write as N = v∆t/λ, carrying
the simple and satisfying interpretation that in time ∆t, the total distance traveled by the particle (if the
jagged path is stretched out) is v∆t, composed of many steps averaging λ in length.

In three dimensions, we essentially have three independent random walks going on at once. Heuristically,
we might imagine that every third collision results in motion along the x-axis, so that progress along the
x-dimension random walk scales as

√
N/3. Of course the particle does not partition its time this way, but
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one can equivalently say that the average step projects only partially onto a particular axis, represented by
this factor of three.

Thus in a particular dimension, our particle effectively takes N/3 steps of length λ, accruing an expected
net progress of λ

√
N/3 in time ∆t, which we might take to be a radius (excursion distance from starting

point). Then we can make the association

R2 =
N

3
λ2 =

v∆t

3λ
λ2 =

1

3
vλ∆t.

Finally, associating the diffusion constant, D, with the rate of change of R2, we have that

D ∼ R2

∆t
∼ 1

3
vλ.

Worth remembering. By the techniques described earlier, we can get the thermal velocity and mean free
path of particles in a gas. Now we know the associated scale of diffusion.

For air, with v ≈ 500 m/s and λ ≈ 70 nm, we find that D ≈ 1.2 × 10−5 m2/s. How do we interpret this?
We have two choices. How far does something diffuse in a given time, or how much time does it take to go
a certain distance? For the former, R ∼

√
D∆t, and for the latter, ∆t ∼ R2/D. We try some things for air

particles in the following table (the arrow indicating the direction of calculation).

∆t direc. R
1 s → 3.5 mm
1 hr → 200 mm

∼ 105 s (∼ 1 day) ← 1 m
∼ 107 s (∼ 4 months) ← 10 m

The square root of time is a killer. Molecules cover short distances rather efficiently, but take ages to move
far.

How is it we can small perfume soon after someone walks into the room, even if meters away? Surely the
perfume molecules are bumping around in a random walk in the air. Clearly diffusion is not the only way
to get around.
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