
Phys 281 Estimation and Scaling in Physics, Part I Murphy Lecture 3

Renewable Energy Estimates

In Lecture 2, we looked at the scale of current energy use, and the total amount of solar energy hitting the
surface of the Earth. We found that we receive about 10,000 times as much sunlight as the 15 TW global
scale of energy “production.” Now we will use order-of-magnitude techniques to estimate how much we might
get from alternative sources. As a number for reference, 15 TW divided by the surface area of the Earth is
0.03 W/m2, or about 0.1 W/m2 over land alone.

Disclaimer: The estimates that follow are not to be taken as definitive numbers that you can take to the
bank. They are made in the spirit of the course—from guesswork and things already known. I may have
occasionally consulted external sources after the fact to make sure I was not wildly off. More often than
not, such checks result in smiles, not grimaces.

Solar Power

Direct sun has 1000 W/m2 reaching the ground. Averaged over day, night, season, and weather, this is
reduced to about 200 W/m2 (factor of 4 in geometry alone, without weather).

Solar Photovoltaic

PV converts photons into photo-electrons (current) directly in the silicon. With a band-gap of 1.1 eV, light
longward of 1.1 µm (λ = hc/E) is ineffective. A crude sketch of the Planck function peaking in the visible
band can easily convince you that 25% of the light is lost to the infrared portion. A photon blue-ward of
1.1 µm will have excess energy that gives the liberated electron excess kinetic energy (heat). So at the peak
of the blackbody curve for the sun, the photon energy is twice what is needed, and only half will contribute
to the photo-current. Thus from a purely physical basis, one might expect PV panels to do no better than
35% efficiency. Recombination and other maladies chop this further, so that affordable panels today come
in around 16%.

Considering land only (about a quarter of the globe), anud using PV panels at 16% efficiency, we could reap
4% of the 10,000 × excess if outfitting all our land, so we only need 1/400th, or 0.25% of land covered to
satisfy our current needs (all forms of energy, including transportation and industry). To address possible
confusion, the fact that a given solar panel is not always in the sun is already accounted for in the factor of
10,000 number, which builds in a factor-of-four for surface area vs. projected area of the Earth. Another
approach says a 15% efficient panel getting a day/night/season/weather average of 200 W m−2 effectively
produces 30 W m−2. Times 0.25% of land area (about 3× 1011 m2) gives something on the order of 10 TW,
which is commensurate with global energy demand.

How much rooftop do we have? If everyone in the U.S. has at least 10 m2 over their heads, including work
space (about one bedroom), then we have 3 × 109 m2 of roof-space. The U.S. is approximately 4000 km by
2500 km, or 1013 m2. 1/400th of this is 2.5 × 1010 m2, or a factor of ten larger than roof space. How much
pavement do we have? Go figure...

Solar Thermal

Solar thermal power plants use steered mirrors or parabolic troughs to concentrate sunlight and heat a fluid
that will then heat water to drive a steam turbine. The heat engine itself has a Carnot efficiency in the
neighborhood of 40%, and then there are engineering losses on top of this, so that we might estimate a total
efficiency of 20% to get electricity: not much different from solar PV. But it’s a little worse because you
must steer the mirrors or troughs to put the concentration where it needs to go, meaning the articulated
mirrors cannot shadow-block each other, and therefore must allow substantial “elbow” room. So the land
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area is not as efficient as PV, though the technique is economically competitive with other renewables when
land is cheap (and sun-scorched: solar thermal needs direct sun and cannot tolerate diffuse, cloudy light the
way PV can). Still, the fraction of land needed is well shy of unity, and solar thermal lends itself well to
built-in thermal storage.

Wind

Wind is a secondary source: the crumbs of solar input due to differential heating. So the total budget
must be some small fraction of the total sunlight available. We might guess 1% in a hasty estimation.
Or if we say that the wind is driven by convective flow, its maximum thermodynamic efficiency would be
(Th − Tc)/Th ≈ 50/300 ∼ 0.15. If half of the atmospheric cooling is convection and half radiation, and
assuming some viscous loss, we’re looking at something in the ballpark of 5%. But let’s come at it from a
different direction.

Weather/wind will be found in the troposphere, about 12 km thick (my guess: about 40 kft). At altitude,
we might guess an average wind speed to be 20 m/s (44 m.p.h.). Maybe this is high (certainly is high
for the average wind speed at ground level). Each square meter of land has about 104 kg of air sitting
above it (atmospheric pressure is 105 Pa, at g = 10 m/s2). So each square meter has 1

2mv
2 ≈ 2 × 106 J

of kinetic energy over it at any given time. But if we sapped this energy out of the atmosphere in one
second—extracting 2 MW for each square meter over the globe—it would take a good while to re-establish.
Let’s guess a day, or 8 × 104 seconds. Thus we might estimate the power in wind to be 25 W m−2. This
estimate seems a little high, at about 10% of average solar input, but let’s roll with it.

We can’t pull all the power out of wind, because to do so would be to constantly stall its generation. Let’s
then say we can get half of it (still greedy?). And we also can’t practically extract wind to towering heights.
Let’s say we’re restricted to the lower 150 m. So we get 1.3 kg/m3 × 150 m3 = 200 kg of the atmosphere per
square meter, or 2% of the total. Combining with our 50% above, we get 1% of the 25 W/m2, or 0.25 W/m2.
If we consider that the average wind speed at the ground is well short of the high-altitude average, and that
the energy scales as v2, we may even reduce this to 0.1 W/m2 or lower—about 0.05% the average sunlight
delivered to the ground.

If the gross solar input is 10,000 times bigger than our use, then wind power is about 4 times our use, or
about equal to our use if we just consider the wind over land. Why would I say this is optimistic? Because
the initial estimate had 10% of the solar energy making wind in the atmosphere, which seems too far off
target. We reduced our numbers later to account for slower speed near the ground, but this reduction would
be required in any case.

See the reference by de Castro et al. for a very nice order-of-magnitude estimate (more sophisticated than
the one here) that also considers many practical aspects, ending up with 1 TW as the realizable global wind
potential.

Geothermal

Decay of thorium, uranium, and potassium in the Earth provide a source of heat flow to space. We know
that surface caves have a stable temperature around 15◦C, and that the mantle must be a rock-melting
temperature of at least 1000 C about 40 km down (crust thickness). So the gradient would be about 25 C/km.
Rock has a thermal conductivity somewhere between wood, at ∼ 1 W/K/m and metal at ∼ 100 W/K/m,
and we’ll guess 5 W/K/m to be somewhat closer to wood than heat-sucking metal. This means each square
meter passes (0.025 K/m) · (5 W/K/m) ≈ 0.125 W/m2 of heat. [After-note: using more realistic thermal
conductivities of rock results in about half this flow rate.]

This is comparable to the land-area power density of our global society. But it is a diffuse source without much
∆T to offer except in rare places of heightened geothermal activity. To run a heat-engine, the efficiency goes
like ∆T/Thot. Even if we span a kilometer to get 25 K, the theoretical maximum thermodynamic efficiency
is less than 10%. Not much of a starter given the diffusive, weak nature—except in a few isolated areas.
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Tidal

Tidal flows can be trapped and made to flow through turbines as the height of the tide creates a pressure
head. In mid-ocean, peak-to-peak tides are less than one meter. Continental shelves amplify this due to
sloshing and resonant behavior. A few exceptional places might see amplification to levels in excess of 10 m.

To put a scale on the whole phenomenon, imagine a quarter of the planet’s surface is raised one meter on
both sides of the prolate bulge. This would be about 1014 m2, with a total gravitational potential energy of
1018 J. If we could trap and release this twice daily (4×104 s), we would derive about 25 TW of power—twice
our global appetite. But this is unattainable from a practical standpoint.

Another scale is to imagine trapping the water on continental shelves within 50 km of land, where the
height may more typically be 2 m. Not all coastlines have continental shelves, but we might imagine that
such shorelines would be enough to circle the globe once, or about 40,000 km. Now the potential energy is
4 × 1016 J, delivered every 4 × 104 s for a power of 1 TW. And if you thought the Great Wall of China was
impressive!

A final scale we might seek comes from the current rate of tidal dissipation. A little bird told me that the
Moon recedes 3.8 cm per year in its orbit. The change in potential is then GMm∆r/r2, and the kinetic
energy changes by half this (virial thm.), so the total energy change is half this amount. It is handy to know
that GM⊕ = 3.98 × 1014 ≈ 4 × 1014 in SI units, that the Moon is 1/80th the mass of the Earth (Earth’s
mass is 6×1024 kg), and that the Moon is 1.25 light-seconds away, or about 4×108 m. All this makes for an
energy change of 1

2 · 4× 1014 · 8× 1022 · 4× 10−2/16× 1016 J, or 4× 1018 J, every 3× 107 s, or about 0.1 TW.
So if we implemented our shoreline trap-and-release scheme, it would effectively increase the rate at which
tidal energy is removed from the Earth-Moon system by a factor of ten, thus speeding up the Moon’s egress.

Wave

Waves come about every 10 s, raising a “breaker” about half a meter (peak of wave may be over 1 m, but
most of mass is lower), and perhaps 2 m thick. So for each meter along the wave, a volume approximately
2 m3 is raised 0.5 m for a potential energy of 104 J. Additionally, this mass of water is moving (once in
breaker form) at maybe 3 m/s, for a kinetic energy of another 104 J. Waves every 10 s means each meter of
projected coastline gets 2000 W of wave power. Seems like a lot: a hair dryer every meter! Let’s say there
is enough receptive coastline to circle the Earth three times (oblique or sheltered coastlines count less or not
at all). This is 120,000 km for a total wave power of about 0.24 TW, or 2% of our worldly demand. Though
2000 W/m sounded like a big number, the linear rather than areal denominator made a huge difference.

Biofuels

We covered the scale of biological activity in Lecture 2, seeing that the total scale for oceans and land is
about 70 TW (humans are 0.7 TW). Most of this feeds the chain of life on the planet (things eat each other).
If we wanted to extract 15 TW from biofuels, we would effectively be commandeering one fifth of the life on
the planet, which would then be unavailable for other, dependent life. So roughly speaking, we could only
do so at the cost of effectively killing a significant fraction of the life on the planet.

Hydroelectric

If we consider North America, we have some big rivers emptying to the ocean that likely dominate the total
hydro flow on our continent: Mississippi, Columbia, Yukon, St. Lawrence. How much flow? At their mouths
we might estimate these rivers to be 1 km across, average of 10 m deep, and flowing at a depth-averaged
speed of 2 m/s. Thus the flow is about 20,000 m3/s for a big river. [Incidentally, the kinetic energy passing
the mouth each second is ∼ 108 W—though the Columbia River’s Grand Coulee Dam produces 7 GW. Are
our numbers off by two orders of magnitude somehow? I claim not—why?] Counting the big rivers, and
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assuming all the rest add up to about the same as the big ones, we get about 2 × 105 m3/s flowing out of
North America. If the average drop of rain falls on land with an elevation of 500 m above sea level, then
the flow represents a gravitational potential energy per time of 2 × 1012 W. This counts every tributary
and spring, as well as ground water flow, and some of the power naturally will go into turbulence/friction.
(Otherwise wild rivers would emerge at the bottom of 1000 m mountains at a ripping speed of 140 m/s,
or 300 m.p.h.!) So we might optimistically guess that only 10% of this is available in damable projects, or
0.2 TW for North America. In fact, this is not far from what we get: the U.S. uses 3 TW in total, and gets
about 3%, or ∼ 0.1 TW from hydro. We have developed all the low-hanging hydroelectric fruit already. We
might be able to expand by a factor of two, but it will still be small beans.

Recommended Books & References

• Sustainable Energy: without the hot air, by David MacKay; free PDF online at www.withouthotair.com.
Brilliant job assessing potential sources of renewables for the U.K.

• Energy: A Guidebook, by Janet Ramage; looks into alternatives not often discussed elsewhere (and
their limitations).

• Carlos de Castro et al., Energy Policy, 39, 6677 (2011), “Global wind power potential: Physical and
technological limits” http://www.sciencedirect.com/science/article/pii/S0301421511004836.
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