
Phys 281 Estimation and Scaling in Physics, Part I Murphy Lecture 4

Everyday Drag

Central in discussions of drag is viscosity. The first thing one should calculate in approaching a drag problem
is the dimensionless Reynold’s Number : Re ≈ rv/ν; where r is the characteristic scale of the object, v is the
velocity through the medium, and ν is the kinematic viscosity (more on this in a bit). There are two regimes
for drag:

1. Viscous drag: Re� 1; small things moving slowly

2. Inertial drag: Re > 100, the drag is not a viscous phenomenon, but rather one of ram pressure

A crossover regime exists for Reynold’s numbers of order 10. These regimes fall out nicely in a Buckingham
Pi approach, which Prof. Diamond will cover later in this course.

A note on viscosity

The kinematic viscosity, ν, has units of [length]2[time]−1, while the dynamic viscosity, η = ρν, has units of
[mass][time]−1[length]−1 = [pressure][time]. The dynamic viscosity is perhaps more intuitive, in that water
“should be” more viscous than air. Indeed, water has a dynamic viscosity of 10−3 Pa·s at a temperature of
20 C (down by a factor of 3 at boiling temperature), while air has a dynamic viscosity of 2× 10−5 Pa · s at
20 C (double this at 160 C). Meanwhile, the kinematic viscosity is often more useful (in Reynolds number,
similar to diffusion constant), and for water is about 10−6 m2/s, and air is about 1.5 × 10−5 m2/s (larger
than for water!). Here is a table of various fluid viscosities.

Substance density (kg ·m−3) η (Pa · s) ν (m2 · s−1)

air 1.3 2× 10−5 1.5× 10−5

water 1000 10−3 10−6

blood 1050 3× 10−3 3× 10−6

ethylene glycol 1100 1.6× 10−2 1.5× 10−5

olive oil 900 0.1 10−4

corn syrup 1360 1.4 10−3

peanut butter 1300 250 0.2

As Prof. Fuller will later show, the diffusion constant for a medium, D ∼ 1
3λv, where the mean free path,

λ ≈ 1/nσ. For air at STP, we have 6 × 1023 particles in 22.4 `, or 0.0224 m3 for a number density of
2.7 × 1025 m−3 and a cross section of approximately πr2 ∼ π(0.3 nm)2, or σ ≈ 3 × 10−19 m2 for a mean

free path of about 100 nm. The thermal velocity is v =
√

3kT
2m ≈ 350 m/s (about the sound speed), so

D ∼ 10−5 m2 · s−1, strikingly similar to our value for ν in the table above.

Viscous Drag

How should viscous drag go? It should involve kinematic viscosity, ν, density of the medium, ρ, some scale
of the object, r, and velocity, v. Putting these together dimensionally, one arrives at Fd ∼ ρνrv = ηrv.

Let’s do a real example: what is the terminal velocity of a marble in corn syrup? The marble is about 1 cm
in diameter, and we expect its speed to be in the neighborhood of 0.1 m/s. So the Reynold’s number is
about Re ≈(0.01 m) · (0.1 m/s)/(10−3 m2/s) = 1. Really, Re < 100 is laminar, and viscous-dominated, so the
marble in corn syrup should be in the viscous regime. Therefore, the drag force will be Fd ∼ ρνrv = ηrv.
When this equals mg of the marble, or 4

3ρmgπr
3, terminal velocity is achieved. So v ∼ 4ρmgr

2/η, evaluating
to 1.4 m/s (r = 5 mm; ρm ∼ 2× 103). Seems fast. We should do an experiment.
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Stokes drag, when done full-up, carries a factor of 6π along with the η. So we should divide our result by a
factor of 20, to get 0.07 m/s. Not far from the initial guess, which honestly was just that, based on a mental
picture of the (unperformed) experiment.

A dust grain in air, with diameter of about 100 µm (like a human hair diameter), will have a terminal
velocity of around v ≈ 1

5
ρobj

ρair
r2g/ν, or about 0.5 m/s if its density is about 1000 times that of air.

High Re Drag

When the speed increases, viscosity becomes less important, and ram pressure (inertial force) becomes the
issue. In the frame of the object, the fluid rushes on, and must be displaced, stalled, or otherwise disrupted.
The kinetic energy of the oncoming fluid is sapped in the process. If the cross-sectional area, A, intercepts
a volume of fluid V = Av∆t in time interval ∆t, the kinetic energy “destroyed” per unit time (power) is
1
2ρV v

2/∆t = 1
2Aρv

3. The power to maintain this condition is equal to the drag force times the velocity, so
that Fd ≈ 1

2ρAv
2.

Everyday Reynolds Numbers

The Reynolds number is Re ∼rv/ν, with ν ≈ 1.5× 10−5 m2/s for air and ν ≈ 10−6 m2/s for water. Thus we
have the following examples:

Action r (m) v (m/s) ν (m2/s) Re
waving hand through air 0.1 5 1.5× 10−5 3× 104

walking 0.5 2 1.5× 10−5 7× 104

baseball pitch 0.05 40 1.5× 10−5 1.5× 105

swimming 0.5 1 10−6 5× 105

car on freeway 1 30 1.5× 10−5 2× 106

submarine at speed 4 10 10−6 4× 107

Boeing 747 at speed 4 300 1.5× 10−5 8× 107

We do not personally experience viscous drag very often: only by watching tiny things in air/water do we
tend to see this regime.

As a cute trick, if you forget the kinematic viscosity of water, imagine drawing a stick through the water and
observing it vibrate, which happens at Re ∼ 2000. If the thin stick has diameter 4 mm (radius = 2 mm) and
we observe the phenomenon at a moderately-brisk speed of 1 m/s, we have ν ∼ rv/Re ∼ 2×10−3 ·1/2×103 =
10−6, right on target.

Drag Applications

We’ve seen, lived, and believed the scaling, also motivating it from a kinetic energy standpoint. We can
lump the remaining ignorance into a dimensionless drag coefficient, cD, of order unity. Then we have:

Fdrag =
1

2
cDρAv

2.

The coefficient of drag goes as follows (from the Wikipedia gods):

Object cD comments
Boeing 747 0.03 uses chord-times wingspan

sphere 0.1–0.4 uses frontal area; depends on smoothness
best cars 0.25 frontal area

pickup truck 0.5 frontal area
tractor trailer 0.8 frontal area
man-bear-pig 1.0–1.4 most things fit here, if not built for streamline

brick 2.0 bad basketball shot
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The range of cD is not huge, within a factor of 2 of 0.5 for most things. Airplanes tend to use the chord of
the airfoil times the wingspan (top area of wing) as the area, so the coefficient is not comparable directly to
the others. Ships and submarines and swimming animals often use wetted area instead of frontal area, also
lowering the number. For a trout, for instance, the wetted area cD ∼ 0.06, while the frontal area cD ∼ 1.2.

Gas Mileage

Let’s consider the gas mileage for a pickup truck, with cD ∼ 0.5, assuming all the energy goes into fighting
drag. We use a frontal area of 4 m2 (roughly a square of dimension 2 m), and a speed of 30 m/s to get
a drag force of 0.5·0.5 · 1.3 · 4 · 900 ≈ 1200 N. The amount of work needed to go 1 mile (1.6 km) is then
1200 N×1600 m, or about 2 MJ. Gasoline is about 10 kcal/g, so that 2 MJ (500 kcal) requires 50 g, or about
70 m`. But the combustion energy of the fuel is not delivered at 100% efficiency to the drive train. A typical
efficiency would be 20% (about what you get from heat engine operating between 500 K and 350 K, realizing
50% of thermodynamic limit). So we need 0.35 ` to go one mile. Each liter will propel you about 3 miles,
and with about 4 `/gal, we get about 12 m.p.g. This is pretty close for a truck. Maybe too pessimistic, so
3 m2 might be more realistic.

A car with half the drag coefficient and also half the projected frontal area will get four times the mileage,
approaching 50 mpg.

Need a Lift?

Now let’s augment our discussion of drag to consider the flight of an airplane. Let’s not mess around with
Bernoulli’s principle or vortex voodoo. We’ll just state that airplanes must fly by shoving air down. The
downward force on the air is matched by the upward force on the plane, in level flight. Considering the
vertical momentum of the air (zero before the plane comes along), we must impart ∆p = mplaneg∆t of
vertical momentum to the air in each time interval ∆t. The volume of air involved is the “tube” with some
effective cross-sectional area manipulated by the airfoil times the column length encountered in the time
interval, so that the mass is: mair = ρAeffv∆t, and this air acquires downward velocity vdown by the airfoil’s
passage. So the momentum imparted to the air per time interval ∆t is ρAeffvvdown = mplaneg.

Now the downward velocity should be related to the velocity of the plane in some sensible way. If we sit in
the airfoil frame and draw the path of the airflow, we might draw the air deflecting moderately at an angle
θ ∼ 0.1 rad, and vdown = vθ.

What is the effective area? It will certainly involve the wingspan, but what effective vertical height does the
wing take hold of the surrounding air? We may naively guess this to scale like the wing chord (length along
flow). Let’s throw in some real numbers and see what pops out.

First, let’s consider a Boeing 747 cruising at altitude at Mach 0.8 (typical), or around 240 m/s at altitude.
How heavy is a B747? If we consider its giant tires, probably inflated to something like 45 p.s.i., or about
3 atm, or 3 × 105 Pa, then imagine how much footprint each makes on the ground, and multiply by the
number of tires, we’ll have an estimate. Guessing 32 tires (2 sets of 4×4 trucks) and each with a footprint
of (0.3 m)×(0.6 m)∼0.2 m2 (these are person-size tires), we get a total area of 6 m2 at 3 × 105 Pa, for a
weight of 2 × 106 N, or 200 metric tons. Not comfortable with this? Remember the “Sully” plane floating
in the Hudson, with people standing on the wings, still dry? The wings are at the bottom of the aircraft
where they meet the fuselage. Let’s say the water line comes up to 1/3 of the bottom-to-top fuselage span,
displacing maybe a quarter of the cross-sectional area. If a B747 radius is 4 m and 40 rows at 1 m/row
long, we have a displacement volume of about 500 m3, or 500 tons of water. The geometric mean of the two
estimates is 300 metric tons. (Wikipedia says max takeoff weight varies according to model from 330 to 440
tons.)

Using our estimate, we find the effective area to be Aeff = mplaneg/ρv
2θ. At cruising altitude, the air density

is significantly less than at sea level. The scale height of the atmosphere is 7 km, and the 747 cruises at
maybe 1.5 scale heights, for a density about a quarter that of sea level, so 0.3 kg/m3. Using θ = 0.1, we get
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Aeff ∼ 1600 m2. If the wingspan is 60 m, then the vertical height is about 25 m! This is a big cross-section
of the air. And this is the effective height of air shoved down at vdown. In reality, a much taller section of
air is impacted by the passage of the plane, with diminishing response as a function of vertical distance.

How much power in the lift? In each time interval, ∆t, we impart 1
2mairv

2
down of kinetic energy to the air,

resulting in a lift power of Plift = 1
2 (ρAeffv)(vθ)2 = 1

2ρAeffθ
2v3, in which we can substitute our relation from

before: ρAeffv
2θ = mg to get Plift = 1

2mgθv. This evaluates to 36 MW, requiring an engine force of F = P/v
of 1

2mgθ ∼ 1.5× 105 N.

How about drag? I have two approaches for estimating the “drag area,” AcD: one using the Wikipedia
value for cD = 0.03 corresponding to the wingspan times chord, or 60 m times maybe 5 m typical chord
for AcD ∼ 10 m2; or I can estimate the frontal area as 60 m times an average height of 1.5 m, and use a
sports-car drag coefficient of about 0.25 to get AcD ∼ 25 m2. If I take something in the middle, like 15 m2,
I get Fd = 1

2ρAcDv
2 ∼ 1.5× 105 N, using ρ = 0.3 kg/m3 and v = 240 m/s.

Is it a coincidence that the engine works as hard to push against drag as it does to produce lift? Not really.
If we look at the original statement that mg = ρAvvdown, we see that only the velocities are variable for a
given airplane. If I cruise slower (less drag), vdown has to increase to compensate. We can say that v2θ is
constant, so that the engine force required to produce lift, F = Plift/v = 1

2mgθ scales as the inverse of the
velocity squared. The sweet spot is achieved when the engine works as hard for lift as it does to fight drag.
Since the goal of air travel is to go from point A to point B (rather than fly some fixed amount of time),
the energy expended is proportional to force applied over the distance. So it is most important to seek the
sweet spot in force rather than the sweet spot in power.

We could have established our value for θ based on this condition. It turns out that our guess was (honestly)
lucky enough to do the job straight away.

As an aside, if we find a velocity, v0, so that equal contributions are offered from a piece scaling like v2 and
a piece scaling like v−2, we can write the force as F = av2 + b/v2, and achieve this equality of contributions
at v0 when av2

0 = b/v2
0 , by which we can replace a with b/v4

0 . Doing so, we re-express F = bv2/v4
0 + b/v2.

Dividing out by b/v2
0 , we can say that force is proportional to F ∝ (v/v0)2 + (v0/v)2. It is easy to show that

this has an extremum (minimum) at v = v0, justifying the statement that the sweet spot will have equivalent
contributions from the two sources.

Glide Ratio

We can also get at the relation between lift and drag by realizing that a plane coasting under no power
(engines dead) will descend at (we hope) a gentle angle. For a B747, this is something like a 20:1, or 0.05
radian descent. A Cessna might have a number around 10:1, and the space shuttle has (had) an alarming 2:1.
Clearly a balance exists between lift and drag in this condition. We found above that the force required along
the direction of travel was 1

2mgθ to sustain lift. If we draw a force diagram with lift and drag perpendicular,
we must tilt the pair forward in the absence of engine thrust to balance the downward gravity vector. The
angle of tilt is θ/2 if the drag force has a magnitude of mgθ/2. At θ = 0.1, this means a tilt of one part in
20. The drag vector opposes the direction of motion. If it gets tilted by a part in 20, it’s because the glide
path is tilted by this amount. So we again find consistency between our guess for θ and the glide slope for
a B747.

We can also see this by looking at the perturbation to the velocity of the airflow. In horizontal flight, in
the frame of the airplane, the wing ideally bends the velocity vector down by an angle θ, without changing
its magnitude. The resultant vector between the original and new vector has a downward component of
∼ vθ, while the horizontal displacement is much smaller (and forward), at v− v cos θ = v(1− cos θ) ≈ 1

2vθ
2.

The ratio of horizontal to vertical components describes the angle of forward deflection of the airflow, which
works out to θ/2. If the airplane is in a steady gliding descent, the reacted air must be going straight down
to offset the gravitational force, which must mean that the airplane has a downward glide slope of θ/2.
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Numbers for a Cessna

Did we just get lucky? Can a Cessna fly too? The smallest Cessna, a two-seater called the 152—whose
characteristics I remember from once flying them—has a maximum takeoff weight of 1650 lbs (about 750 kg),
and a wingspan of about 10 m. They cruise at about 110 m.p.h., or 50 m/s. They fly in dense sea-level air.
The glide slope is 10:1, so we’ll use θ = 0.2. We get from this Aeff ∼ 12 m2, suggesting a vertical column
equivalent of 1.2 m (proportionally small compared to B747, much owing to larger θ). The along-flight force
required to sustain lift, 1

2mgθ, is 750 N. The value of AcD may be estimated two ways again: frontal wing
area of 10 m times 0.2 m, plus another 1 m2 for the cramped fuselage for a total area of 3 m2 at a drag
coefficient of 0.25, for AcD ∼ 0.75 m2. The wing chord is about 1.5 m, and the cD will not be as good as for
a 747: maybe 0.05. Together with the wingspan, this makes AcD ∼ 0.75 m2. Hey—the same! Now the force
of drag at sea level and 50 m/s is 1200 N.

The Cessna 152 engine is rated at 110 horsepower = 82 kW. The thrust at 50 m/s is then 1640 N. This is
pretty close to our sum of lift and drag along-flight forces required, and the two forces are also in the same
ballpark. And I can tell you that the stated cruise speed is indeed running the engine at full power! Knowing
this, the lift and drag should be about equal at 800 N, and our drag figure seems to be an overestimate.
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